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a b s t r a c t 

Oxygen minimum zones (OMZ) are represented by sharply depleted oxygen concentrations in the mod- 

ern ocean basins. The expansion of these zones is documented since 1960. They have been expanding 

globally in the world’s oceans with profound implications for marine ecosystems and biogeochemical cy- 

cles. Under this review, we synthesize and integrate the current knowledge on the factors, dynamics and 

consequences of OMZ expansion in the modern ocean basins. We have explored the interplay of physical, 

chemical and biological factors conducive to OMZ formation and intensification, highlighting the role of 

ocean circulation patterns, nutrient enrichment from anthropogenic activities and augmenting influence 

of climate change. The impact of OMZs on marine ecology are explored with the focus on physiologi- 

cal stress on marine organisms, habitat compression, shifts in community structure and potential loss of 

biodiversity. We have also investigated their contribution to greenhouse gas emissions and the biogeo- 

chemical significance of OMZs, particularly in the context of nitrogen and other nutrient cycles. Further, 

this work emphasizes on the complex feedback loops between OMZ expansion and climate change un- 

derscoring the urgent need for mitigation and adaptation strategies. At the outset, the study discusses 

the future research scopes and management approaches crucial for addressing the challenges posed by 

expanding OMZs thereby ensuring the health and sustainability of modern ocean basins. 

© 2025 The Author(s). Published by Elsevier Ltd on behalf of Ocean University of China. This is an open 

access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Over a geological past, ocean has evolved from being a sul- 

hidic to sulphate in character with transformation from anaer- 

bic hothouse of early life to well oxygenated nature supporting 

ulticellular lifeforms ( Kasting and Siefert, 2002 ). This transforma- 

ion was interrupted by several extinction events followed by ra- 

iation of species leading to biological diversity ( Henehan et al., 

019 ; Jurikova et al., 2020 ). However, during Anthropocene, the 

uman activities have led to significant changes in the modern 

ceans. Recent studies observe that oceans have become more 

cidic and significantly warmer ( Orr et al., 2005 ; Babila et al., 

022 ). As these changes continue and intensify, it will lead to se- 

ere disturbances in marine ecology affecting structure of marine 

iosphere with resulting effect on socio-economic benefits ( Doney., 

010 ; Prada et al., 2017 ). Oxygen minimum zones (OMZs), also 

efined as oxygen deficient regions of ocean, are vital for these 

hanges and represent a striking paradox within the world’s oceans 

 Keeling et al ., 2010 ). These zones are starkly juxtaposed to the

xygen-rich surface waters that support a flourishing marine life. 

MZs are typically situated at depths ranging from 200 to 10 0 0 m 

uch as eastern tropical North and South Pacific (ETNP and ETSP), 

ut are not necessarily restricted to these depths alone ( Fig. 1 ; 

alli and Parsons, 1993 ). Local conditions, such as those reported 

n the Arabian Sea (AS) and Bay of Bengal (BoB), can lead to 

he formation of OMZs at shallower and mid depths respectively, 

ometimes as shallow as 50–100 m ( Fig. 1 ; Morrison et al ., 1999 ;

cCreary et al., 2013 ; Al Azhar et al., 2017 ). This depth variability

ighlights the complex interaction of physical, chemical, and bio- 

ogical factors that control the distribution and characteristics of 

MZs. This phenomenon forms in the ocean water column when 

xygen requirement during decomposition of organic matter ex- 

eeds the oxygen availability in restricted regions of the oceans 

 Helm et al ., 2011 ). OMZs are termed as being ‘more intense’

hen oxygen concentration in its core is lower and this concen- 

ration even reaches as low as < 1 micromole (μm). Water stratifi- 

ation occurs as ocean surface temperatures tend to increase, dis- 

ouraging vertical mixing. The spatial extent of OMZs is projected 

o swell, particularly in the tropical regions where the effects of 

lobal warming are more pronounced, leading to a significant im- 

act on marine ecosystems and nutrient cycling ( Bindoff et al., 

019 ). 

In spite of their uninhabitable nature, OMZs support a distinc- 

ive marine ecosystem that adapted to oxygen depleted conditions. 

t plays a crucial role in managing the global biogeochemical cy- 

les, particularly the carbon and nitrogen cycles. As a matter of 

act, these are identified as the foremost sites for nitrogen loss to 

he atmosphere aided by microbial processes such as denitrifica- 

ion and anammox ( Arrigo, 2005 ; Paulmier and Ruiz-Pino, 2009 ). 

hese processes transform the bioavailable nitrogen into forms un- 

sable by most marine organisms thereby influencing the primary 

roductivity and regulating the overall health of the ocean. Under- 

tanding the OMZ dynamics is critical for both comprehending the 

ntricate web of marine life they support and for predicting the 

limate change impacts on these zones. There is recent evidence 

 Wright et al., 2012 ; Breitburg et al., 2018 ; Long et al., 2021 ) that

lobal climate change, primarily through warming waters and in- 

reased stratification, has already or is poised to reduce oxygen 

evels of several modern ocean basins. This trend raises concerns 

bout the potential expansion of existing OMZs and the formation 

f new ones with potentially far-reaching consequences for marine 

cosystems challenging the socio-economic aspects of the ocean 

asins. 

With this background, the study aims to provide an extensive, 

lthough not exhaustive, overview of main and most intense OMZs 

n the modern ocean basins (ETNP, ETSP, AS and BoB), delving into 
2

heir characteristics, causes and effects on marine ecosystems and 

iodiversity. We also intend to explore the delicate balance of fac- 

ors which contribute to their formation, the unique adaptations 

f organisms that flourish within these oxygen-depleted zones and 

ritically compare their important characteristics to understand the 

mplications of OMZ expansion for the future health of modern 

cean basins. By shedding light on these critical aspects of OMZs, 

e hope to contribute to a thorough understanding of their signif- 

cance in the context of a rising Earth’s surface temperature and 

hanging global climate. 

. Causes of OMZ 

Oxygen saturation reaches to critically low levels in the re- 

ions of oxygen minimum zones. They are simply not a product of 

ow oxygen supply, but rather interplay of physical, biological, and 

hemical processes that contribute to their formation and suste- 

ance. Understanding of these intricate processes is vital for fore- 

asting how OMZs might respond to a changing climate and the 

otential consequences for marine ecosystems. 

.1. Physical processes: limiting oxygen supply and ventilation 

One of the primary physical processes influencing the forma- 

ion of OMZ is ocean stratification. This stratification occurs when 

armer, less dense water overlies cooler, denser water creating a 

arrier that inhibits vertical mixing ( Singh et al., 2018 ). It is often

xacerbated by temperature and salinity gradients which can lead 

o reduced oxygen replenishment in deeper waters ( Canfield and 

raft, 2022 ; Beghoura et al., 2023 ). Unlike the surface layer, where 

irect contact with the atmosphere allows for continuous oxygen 

eplenishment, deeper waters rely on a process called ventilation. 

his involves the transport of oxygen-rich surface waters to deeper 

epths through a complex interplay of currents, winds, and water 

ensity gradients usually known as Thermohaline Circulation. This 

lobal conveyor belt plays a crucial role in transporting oxygenated 

urface waters towards the ocean depths. In poorly ventilated re- 

ions such as Eastern Tropical Pacific and Arabian sea, sluggish cir- 

ulation can lead to the accumulation of organic matter and resul- 

ant oxygen depletion ( Figs. 2 and 3 ; Espinoza-Morriberon et al., 

021 ; Rangamaran et al., 2023 ). However, the sluggish nature of 

his circulation, often taking centuries to complete a cycle which 

ndicates that oxygen consumed in the deep ocean is not quickly 

eplenished ( Yamamoto et al., 2015 ). Additionally, interaction of 

ddies with OMZs can influence nutrient cycling and the distri- 

ution of oxygen, as these features can trap and transport water 

asses with varying oxygen concentrations ( Keil et al., 2016 ). As 

cean temperatures rise further due to climate change, the density 

ifference between warm surface waters and colder, deeper waters 

ncreases causing stratification of ocean water column, thus, pre- 

enting the mixing of surface and deep waters, thereby limiting 

he oxygen supply to bottom waters. Moreover, OMZs often form 

ater mass boundaries between distinct water masses of differ- 

nt densities and oxygen concentrations ( Rixen et al., 2020 ). These 

oundaries act as barriers to mixing and trapping oxygen-poor wa- 

ers within specific depth ranges. 

.2. Biological processes: oxygen consumption and remineralization 

While physical processes in the ocean restrict the oxygen sup- 

ly, biological activity within the ocean water column plays a key 

ole in consuming the available oxygen, thus contributing to the 

ormation of OMZs. The oxygen concentration is primarily reduced 

hrough respiration when its rate overwhelms the rate of oxygen 
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Fig. 1. World ocean map depicting dissolved oxygen concentrations at ∼500 m depth. Note the significantly depleted oxygen concentrations in eastern tropical North and 

South Pacific (ETNP & ETSP), Arabian Sea (AS) and Bay of Bengal (BoB). Data source ( Garcia et al.., 2024a , 2024b ) from NOAA World Ocean Database 2023 using all oxygen 

concentrations from 1965–2022 and was plotted using Ocean Data View. 

Fig. 2. Depth wise c ross section (X-Y) of dissolved oxygen profile of Eastern tropical North and South Pacific (ETNP & ETSP) oxygen minimum zones showing oxygen 

concentration from surface waters to the sea floor. Note the thickness of ETNP OMZ compared to ETSP OMZ. 

Fig. 3. Depth wise e ast-west c ross section (A-B) of dissolved oxygen profile of Arabian Sea (AS) showing wide extent and intensity of oxygen minimum zone. 
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upply ( Rabalais et al., 2020 ). As organic matter sinks from the sur-

ace waters, it is ingested by archaea, bacteria and other microor- 

anisms via microbial respiration ( Ulloa et al., 2012 ; Baroni et al., 

020 ). This process utilizes oxygen and releases carbon dioxide, re- 

ucing oxygen concentration in the ocean water column. Further, 

he areas of the ocean with high primary productivity such as up- 

elling zones, often experience enhanced formation of OMZ. The 

bundance of phytoplankton in these regions of the oceans leads 

o an excess of organic matter sinking to deeper depths, steer- 

ng microbial respiration ( Paulmier et al., 2006 ; Fuenzalida et al., 

009 ; Thamdrup et al., 2012 ). The bacterial and microbial break- 

own of this organic matter releases nutrients back into the ocean 
3

ater column known as remineralization. This process, particularly 

n Bay of Bengal OMZ, gets enhanced due to the higher riverine 

upply from Indian landmass to Bay of Bengal thus facilitating the 

ormation of OMZ ( Figs. 1 and 4 ; Al Azhar et al., 2017 ). Though it

s essential for nutrient cycling, this process further consumes oxy- 

en exacerbating oxygen concentration in the OMZs ( Giering et al., 

014 ; Limburg et al., 2020 ; Weber and Bianchi, 2020 ). 

.3. Chemical processes: oxygen depletion and nutrient cycling 

The chemical environment within OMZs also plays a key role 

n shaping their characteristics and influencing the cycling of es- 



A.K. Singh, A.A. Singh and K. Ahmad Geosystems and Geoenvironment 5 (2026) 100483

Fig. 4. Depth wise NW-SE c ross section (C-D) of dissolved oxygen profile of Bay of Bengal (BoB) oxygen minimum zone showing oxygen concentration from surface waters 

to the sea floor. Note the decreasing intensity and thickness towards south-east. 

Fig. 5. Schematic cartoon (not to scale) of ocean deoxygenation processes and effects of OMZs on biogeochemical cycles viz. nitrogen, carbon and sulfur cycles in oxic and 

anoxic water column of ocean basin and their relations with underlying sediments. Note the upwelling, limited deep water ventilation and chemical transformations in three 

realms of the ocean. 
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ential nutrients. It plays an essential role in global nitrogen cy- 

le in which different chemical species (NH4 
+ , NO3 

- , NO2 
- , N2 O 

nd N2 ) intervene with various bacterial processes. The nitrifica- 

ion process converts ammonium (NH4 
+ ) into nitrate (NO3 

- ) at up- 

er boundary (oxycline) of OMZ under oxic condition, one of the 

ital regulating nutrients in the ocean ( Fig. 5 ). However, OMZs are 

ainly associated with denitrification process which transforms 

O3 
- into gaseous nitrogen (N2 ) through a bacterial process in oxy- 

en deficient regions. This gaseous nitrogen, then escapes to atmo- 

phere thereby contributing to ocean nitrate deficit ( Tyrrell, 1999 ; 

eitzinger et al., 2006 ; Naqvi et al., 2008 ; Ward et al., 2009 ;

am and Kuypers et al., 2011 ). Further, it has been observed that 

he ammonium ion (NH4 
+ ) converts directly into gaseous nitro- 

en and water, in the presence of nitrite ion (NO2 
- ), an unknown 

naerobic ammonium oxidation process defined as ‘anammox’. It 

as been first noted in the sediments and then in the water col- 

mn in the OMZs which imposes an absolute revision of global ni- 

rogen cycle ( Fig. 5 ; Arrigo, 2005 ; Ward et al., 2009 ; Jensen et al.,

011 ; Kalvelage et al., 2013 ). The low oxygen levels in OMZs cre-

te unique chemical conditions that favor the accumulation of cer- 

ain nutrients, such as phosphate and iron. These nutrients can 

uel primary productivity when transported to surface waters, in- 

uencing global biogeochemical cycles ( Fig. 5 ; Paulmier et al., 

006 ; Canfield and Kraft, 2022 ). OMZs are also responsible for 

ycle production of very important climatic gases such as H2 S, 
4

H4 and approximately 50% of oceanic N2 O and further plays 

ivotal role in the limitation of atmospheric CO2 sequestration 

y the ocean ( Fig. 5 ; Dugdale et al., 1977 ; Cicerone and Orem-

and, 1988 ; Bange et al., 1996 ; Paulmier et al., 2006 ; Naqvi et al.,

010 ). They are chemically characterized by acidification and re- 

uced conditions favouring reduced chemical species such as Fe 

II) or Cu(I) potentially aiding photosynthesis or N2 O production 

 Paulmier, 2005 ). 

The complex interactions among physical, chemical and bio- 

ogical processes causes the formation and sustenance of OMZs. 

n understanding of these processes is crucial for predicting fu- 

ure trends of OMZs in response to a changing climate and the 

otential consequences for marine ecosystems and global biogeo- 

hemical cycles. The current expansion of OMZs present serious 

hallenges to marine biodiversity with potential shifts in commu- 

ity composition and ecosystem function as many marine species 

Zooplanktons, Phytoplanktons etc.) are adapted to specific oxy- 

en levels and may be intolerant in fairly deoxygenated condi- 

ion ( Fernández Álamo and Färber Lorda, 2006 ; Limburg et al., 

020 ; Färber Lorda and Färber Data, 2023 ). This phenomenon of 

daptation to specific oxygen levels by marine species came to be 

nown as habitat compression hypothesis (HCH), first proposed by 

ernández Álamo and Färber Lorda (2006) and later supported by 

tramma et al. (2008) for the eastern tropical North Pacific and the 

quatorial pacific. 
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. Classifying OMZs: A spectrum of oxygen depletion 

OMZs are not homogeneous entities and display a range of 

haracteristics relying on their geographic location, the interplay 

f physical and biological processes and the degree of oxygen re- 

uction. Karstensen et al. (2008) dealt into the different types of 

MZs describing their defining characteristics. OMZs are broadly 

lassified based on the severity of oxygen depletion influencing 

he types of biogeochemical processes that may occur and the ma- 

ine life they can support ( Moffitt et al., 2015 ; Long et al., 2021 ;

iu et al., 2024 ). 

.1. Open ocean OMZs 

These are the most extensive type, found in the interior re- 

ions of the ocean, typically at depth ranges of 20 0–150 0 m They 

re characterized by oxygen concentrations below 45 μmol/kg, but 

arely reaching anoxic conditions (completely devoid of oxygen; 

uenzalida et al., 2009 ; Canfield and Kraft, 2022 ). These OMZs are 

ontrolled by large scale circulation in ocean basins along with 

ssociated physical, chemical and biological processes ( Fernández 

lamo and Färber Lorda, 2006 ). The eastern tropical Pacific Ocean 

ETP) host significant open ocean OMZs which comprises (a) east- 

rn tropical North Pacific (ETNP) and (b) eastern tropical South 

acific (ETSP) oxygen minimum zones. They are primarily located 

etween depths of approximately 200 to 10 0 0 m ( Figs. 1 and 2 ;

arstensen et al., 2008 , 2015 ). ETNP extends from 0 °−25 °N latitude

n the west of Mexico and United States of America (USA) covering 

 huge area of ∼12.4 million square km whereas ETSP has three 

ain components extending from 0 °−37 °S on the west off Chile, 

eru and near equator covering a relatively lower area of ∼5.7 

illion square km ( Paulmier and Ruiz-Pino, 2009 ). The core depth 

f ETNP OMZ extends from 350–450 m with extensive horizontal 

idth of ∼350 0–50 0 0 km offshore (Inferred horizontal extent from 

ap boundaries) while it extends up to 600 m in ETSP OMZ and 

hoals to ∼40 m off Mexico and central America with broad & con- 

inuous horizontal extent of ∼30 0 0 km offshore thereby indicating 

hat ETNP OMZ is wider and more pronounced than that of ETSP 

 Fernández Álamo and Färber Lorda, 2006 , see Fig. 3 ; Fiedler and

ärber Lorda, 2008 ; Fuenzalida et al., 2009 ; Strama et al., 2010 ;

wiecinski and Babbin, 2021 ). Staaf et al. (2010) further points that 

he oxygen levels within these OMZs can drop to critically low 

oncentrations, often below 20 μM. The concentration has been 

ecorded below 3–4 nM in the core of ETSP forming suboxic con- 

itions compared to as low as 3.8 μM/kg in core of ETNP OMZ 

 Canfield and Kraft, 2022 ; Färber Lorda and Färber Data, 2023 ). 

he oxygen supply mechanism in ETNP is driven through zonal 

urrents such as equatorial undercurrent (EUC), subsurface counter 

urrents (SCCs) and intermediate countercurrents (ICCs) forming 

entilation pathways which supply limited O2 from the west due 

o shadow zones and stratification ( Fiedler and Färber Lorda, 2008 ; 

tramma et al., 2010 ). Compared to ETNP, ETSP OMZ gets its very 

imited O2 supply through equatorial subsurface water (ESSW) 

ransported by Peru-Chile undercurrent which becomes poorly 

entilated due to increased stratification and barriers from Antarc- 

ic intermediate water (AIW; Feunzalida et al., 2009 ). The more de- 

ailed comparative analyses are described in Table 1 . This dynam- 

cs of the ETP OMZ are controlled by ocean circulation patterns, 

pwelling processes and climatic variations. The critically low oxy- 

en concentrations are largely controlled by elevated rates of or- 

anic matter generation in surface waters as upwelling of nutrient 

aden waters in these regions leads to higher microbial respiration 

nd subsequent oxygen consumption in the water column ( Figs. 1 

nd 2 ; Ito and Deutsch, 2013 ; Busecke et al., 2022 ). The mesoscale

ddies in the eastern tropical Pacific, further, control the nitrous 

xide distribution, an important greenhouse gas produced under 
5

ow-oxygen conditions which in turn impacts the biogeochemical 

ynamics of the OMZ ( Arévalo-Martínez et al., 2016 ). 

.2. Coastal OMZs 

The depleted dissolved oxygen concentrations (commonly less 

han 20 μmol/kg) characterize these coastal OMZs and are usu- 

lly located in the shallow coastal waters adjacent to the conti- 

ental margins. These OMZs are intricately linked to the upwelling 

rocesses which transport nutrient laden water to the ocean sur- 

ace leading to the high biological productivity in the form of phy- 

oplankton blooms that gobbles up most of the oxygen during 

heir decomposition thereby creating hypoxic (anoxic) conditions 

 Gilly et al., 2013 ; Espinoza-Morriberón et al., 2021 ). Coastal OMZs 

an undergo more severe oxygen depletion compared to their open 

cean counterpart, occasionally leading to hypoxic conditions. The 

eruvian OMZ (part of ETSP OMZ), for example, is known for its 

hallow depth and severe hypoxia with oxygen concentration in its 

ore falling to nearly anoxic conditions ( < 1 μmol/L; Thomsen et al., 

016 ; Fig. 2 ). It is influenced by seasonal fluctuations in upwelling 

ystem and wind patterns that can lead to variations in oxygen 

oncentrations and the distribution of marine life ( Vergara et al., 

016 ). Moreover, the scenario of biogeochemical dynamics within 

he coastal OMZs are bit complex which involves significant sulfur 

nd nitrogen cycling. Sulfur cycling is, particularly, active in such 

ones, where interaction of sulfide-rich sediments with the over- 

ying water column contribute to a coupled benthic-pelagic sul- 

ur cycle ( Figs. 2 , 3 and 5 ; Callbeck et al., 2021 ). Additionally, the

icrobial processes in such OMZs play a vital role in transform- 

ng fixed nitrogen into greenhouse gases, thus impacting both local 

cosystems and global climate ( Ulloa et al., 2012 ; Vuillemin et al., 

022 ). The anammox and denitrification processes are widespread 

n these environments that contribute to nitrogen loss, further ex- 

cerbating the hypoxic conditions ( Bohlen et al., 2011 ). 

.3. Seasonal OMZs 

These OMZs are temporary, forming and disappearing with sea- 

onal shifts in the oceanographic conditions. They are marked by 

reatly reduced dissolved oxygen levels, which vary with changes 

n environmental conditions throughout the seasons. These zones 

re particularly prominent due to strong upwelling, such as the 

rabian Sea and the eastern tropical Pacific. One of the defining 

eatures is their depth and the variability associated with seasonal 

pwelling. For instance, the OMZ is located beneath a strong and 

hallow thermocline in the eastern tropical Pacific, which can fur- 

her rise to the depth range of 25–30 m during the dry season due 

o seasonal upwelling ( Fig. 2 ; Logan, 2023 ). Similarly, the Arabian 

ea (AS) exhibits a pronounced OMZ that can extend from 150 to 

250 m, with oxygen concentrations dropping below 2 μmol kg−¹
orming anoxic conditions ( Fig. 3 ; Schenau et al., 20 0 0 ). On the

ther hand, Bay of Bengal (BoB) OMZ shows 20 0–70 0 m thickness 

ith oxygen concentrations ranging between 5–20 μmol kg−¹ ex- 

ibiting hypoxic condition ( Fig. 4 ; Rixen et al., 2020 ; Vidhya et al.,

022 ). This depth variability is influenced by monsoonal winds 

hat drive coastal and open-ocean upwelling, leading to high pro- 

uctivity and subsequent organic matter decomposition, which 

onsumes oxygen ( Schenau et al., 20 0 0 ; Parvathi et al., 2023 ). Den-

trification in AS OMZ is quite intense and widespread compared 

o BoB OMZ where it is virtually absent ( Al Azhar et al., 2017 ).

he seasonal dynamics of OMZs are also influenced by physical 

nd biogeochemical processes. For example, the seasonal modu- 

ation of mesoscale activity significantly impacts the eddy flux of 

issolved oxygen at the boundaries of the OMZs, leading to vari- 

tions in oxygen levels throughout the year ( Vergara et al., 2016 ). 
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Table 1 

Comparative analyses of ETNP and ETSP Oxygen Minimum Zones. 

Parameters ETNP Oxygen Minimum Zones ETSP Oxygen Minimum Zones References 

Geographical Extent Off western Mexico, California and 

Central America 

Off Peru and northern Chile Paulmier and Ruiz-Pino, 2009 

Core Depth ∼350–450; may extends up to 900 m Extends up to 600 m and shoals as 

shallow as 30–50 m off Peru coast 

Stramma et al., 2010 ; 

Davila et al., 2023 

Horizontal Extent Inferred range of ∼3500 to 5000 m 

offshore from western edge roughly 

around 140 °−150 °W 

Broad and reaches up to more than 

3000 m offshore and may continue 

even further 

Feunzalida et al., 2009 

Oxygen Concentration < 4 μmol/kg; often reaching near zero 

in the core 

< 3–4 nM in the core causing anoxic 

conditions 

Canfield and Kraft, 2022 

Oxygen supply & 

Ventilation Pathways 

Zonal currents like Equatorial 

Undercurrents (EUC), Subsurface 

Counter Currents (SCCs), Intermediate 

Counter Currents (ICCs) supply 

moderate O2 from the west, but 

limited by shadow zones and 

stratification 

Equatorial Subsurface Water (ESSW) 

transported by Peru-Chile Under 

current; O2 depleted on arrival due to 

poor ventilation & increased 

stratification and barriers from 

Antarctic Intermediate Water (AIW) 

Feunzalida et al., 2009 ; 

Stramma et al., 2010 

Water Mass Sources Tropical and subtropical waters from 

both hemispheres 

Primarily ESSW, but Antarctic 

Intermediate Water influence at depth 

Davila et al., 2023 

Nutrient Cycling and 

N2 Loss 

High denitrification; contributes 

∼1/3rd of global pelagic N loss 

Strong & Intense denitrification and 

anammox dominate; major 

contributor to N deficit 

Ulloa and Pantoja, 2009 ; 

Tems and Tappa, 2024 

Microbial Ecology Zones of overlapping aerobic and 

anaerobic processes; active nitrifiers, 

denitrifiers & anammox bacteria; low 

diversity to benthic fauna due to 

hypoxia but presence of adapted 

macrofauna; high impact on fisheries 

Similar microbial assemblages with 

adaptations to very low O2; low 

benthic fauna diversity; presence of 

large sulphur oxidizing bacteria & 

nitrate respiring protists; high impact 

on fisheries & crustaceans 

Ulloa and Pantoja, 2009 

Temporal changes & 

Climate sensitivity 

Contractions & expansions of OMZ in 

past 2000 years due to strong ENSO & 

Pacific Decadal Oscillations (PDO); 

strong influence on productivity and 

OMZ intensity 

Strongly impacted by ENSO; El 

Nino/La Nina causes rapid OMZ depth 

and thickness changes due to 

warming and stratification 

Paulmier et al. 2009 ; 

Tems and Tappa, 2024 
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(

n the Arabian Sea, the interaction between monsoon driven up- 

elling and restricted ventilation forms one of the world’s thickest 

MZs globally, with seasonal blooms further contributing to the 

xygen depletion due to high primary productivity compared to 

oderate productivity in BoB OMZ due to monsoon driven eddies 

nd weak upwelling ( Figs. 3 and 4 ; DiMarco, 2023 ; Parvathi et al.,

023 ). Also, the seasonal fluctuations in circulation patterns and 

ater mass advection play a pivotal role in the intensity and dis- 

ribution of Arabian sea OMZ in which it is found to be strongest 

nd persistent during the winter monsoon whereas it is episodic 

nd weak in BoB OMZ because of highly influenced by mesoscale 

ddies ( Sarma, 2002 ; Queste et al., 2018 ; Schmidt et al., 2019 ). The

easonal OMZs, biologically, support the unique microbial commu- 

ities that adapt to low-oxygen conditions ( Fig. 4 ). These commu- 

ities are involved in alternative electron acceptor processes, such 

s denitrification and anammox, which are critical for nitrogen cy- 

ling in these environments ( Lam and Kuypers, 2011 ). Additionally, 

he interaction between the benthic and pelagic environments in 

MZs can lead to complex biogeochemical cycles, including sul- 

ur cycling, which is particularly active in highly productive coastal 

MZs ( Callbeck et al., 2021 ). 

. Variability and interconnectivity: a dynamic system 

OMZs are influenced by multitude of factors including oceano- 

raphic conditions, biological processes and climate variability. The 

ceanographic conditions such as temperature, salinity and sea- 

onal monsoon variations affect water column stratification and 

utrient availability that further influence the variability within 

he OMZ ( Sarma, 2002 ; Levine and Turner, 2012 ). One of the pri-

ary factors contributing to the variability of OMZs is the inter- 

ction between physical and biogeochemical processes including 

he dynamics of the mixed layer, nutrient cycling and denitrifica- 

ion ( Figs. 1 and 5 ; Sarma, 2002 ). Montès et al. (2014) , for exam-
6

le, highlights the representation of the Equatorial Current System 

hich is crucial for accurately modeling the OMZ in the eastern 

ropical Pacific. This variability is, further, compounded by seasonal 

hanges revealing that mesoscale activities play a critical role in 

nfluencing oxygen levels ( Vergara et al., 2016 ). Moreover, the in- 

uence of climate variability, particularly through phenomena such 

s El Niño and La Niña, significantly affects the microbial commu- 

ity dynamics within OMZs. Pajares and Merino-Ibarra (2023) re- 

orted that prokaryotic assemblages and nitrogen-cycling genes 

re closely related to local physicochemical conditions and oceano- 

raphic fluctuations associated with these climate events, under- 

coring the importance of climate variability in shaping microbial 

ynamics in OMZs. This interplay of biological and climate pro- 

esses demonstrates the interconnectedness of various factors that 

overn OMZ dynamics. 

The interconnectivity of the Arabian Sea’s ecosystems to atmo- 

phere is evident that how atmospheric conditions and ocean cur- 

ents influence the formation and expansion of OMZ. For instance, 

he Great Whirl, defined as a large anti-cyclonic eddy which forms 

very year after the onset of the summer monsoon, plays a cru- 

ial role in regulating sea surface temperature (SST) and merid- 

onal heat transport in the region ( Schott and Quadfasel, 1982 ; 

irth et al., 2002 ). The fluctuations of the Great Whirl and its in-

eractions with the Somali Current greatly influence the distribu- 

ion of nutrients and dissolved oxygen levels in the OMZ which 

n turn affects the marine biodiversity and productivity ( Figs. 1–3 ; 

cCreary et al., 1996 ; Melzer et al., 2019 ). Furthermore, the sea- 

onal monsoonal winds drive the mixing of surface waters which 

an worsen OMZ conditions depending on the timing and strength 

f these winds ( Sreekanth, 2016 ). Moreover, the Arabian Sea’s OMZ 

s influenced by external factors such as aerosol loading and conti- 

ental meteorology. Several workers ( Nair et al., 2012 ; Jin et al., 

018 ) have also shown the fluctuations in aerosol optical depth 

AOD) which may affect the regional climate and consequently the 
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cean’s biogeochemical cycles. During the periods of high AOD, 

uch as those linked to dust storms, changes in solar radiation can 

ffect the primary productivity and influence the oxygen dynam- 

cs in the water column thereby highlighting the interconnected- 

ess of atmospheric and oceanic processes in shaping the ecologi- 

al landscape of the Arabian Sea ( Fig. 3 ; Jin et al., 2018 ). 

Also, OMZs are interconnected with other components of the 

arth system which are influenced by global climate change, nu- 

rient cycling and marine productivity. It is crucial to understand 

hese complex interactions which becomes essential for forecasting 

he future of OMZs and their potential effects on marine ecosys- 

ems and global biogeochemical cycles. The ongoing research in 

his domain, is quite crucial for explaining these interdependen- 

ies and addressing the environmental challenges posed by the 

xpansion of OMZs, especially in the light of anthropogenic ef- 

ects on the ocean’s health and climate dynamics ( Paulmier and 

uiz-Pino, 2009 ). The implications of OMZ dynamics are partic- 

larly pronounced in regions like the Arabian Sea, where strong 

easonal variability in circulation patterns significantly influences 

xygen levels, indicating the need for comprehensive studies to un- 

avel these complex relationships and their broader ecological con- 

equences ( Fernández Álamo and Färber Lorda, 2006 ; Paulmier and 

uiz-Pino, 2009 ; Schmidt et al., 2020 ; Färber Lorda and Färber 

ata, 2023 ). 

. Effects of expanding OMZs 

The presence of oxygen minimum zones, marked by their 

epleted oxygen levels, have far-reaching influence on ocean- 

tmosphere system. Their expansion in the ocean has been 

inked to climate change, decreased oxygen supply due to warm- 

ng and organic matter remineralization ( Stramma et al., 2012 ; 

remblay and Abele, 2016 ; Croizier et al., 2020 ). The solubility of 

xygen in ocean water reduces due to rise in global temperatures 

xacerbating the decline in oxygen levels thereby contributing to 

xpansion of these zones ( Getzlaff et al., 2016 ; Almendra, 2024 ). 

hey play a crucial role in managing the nitrous oxide (N2 O) 

ux, a potential greenhouse gas, from the ocean to the atmo- 

phere which has severe implications on marine ecology and ma- 

ine biogeochemical cycles especially in the context of the nitro- 

en cycle, denitrification and nitrogen fixation processes ( Lam and 

uypers, 2011 ; Vik et al., 2021 ). The oxygen consumption causes 

roduction of the nitrogen gas (N2 ) and nitrous oxide (N2 O) in the 

MZs which escapes into the atmosphere accounting for a sub- 

tantial portion of global N2 O emissions, thereby controlling green- 

ouse gas concentrations ( Fig. 5 ; Bristow et al., 2016 ; Fu et al.,

018 ; Boubonnais, 2023 ). The microbial communities in these 

egions adjust to conditions of reduced oxygen availability fre- 

uently depending on different electron acceptors for their respi- 

atory processes which can additionally modify nutrient dynam- 

cs and functioning of the ecosystem ( Lam and Kuypers, 2011 ; 

alvelage et al., 2015 ). OMZs are primarily responsible for the cy- 

ling of nitrogen through processes such as denitrification and an- 

amox ( Paulmier and Ruiz-Pino, 2009 ). Increase in nitrogen from 

uman activities can further enhance denitrification in OMZs, po- 

entially leading to higher N2 O emissions and exacerbating climate 

hange. 

Furthermore, it impacts the marine life by forming inhospitable 

onditions for several aerobic organisms. The species that are in- 

olerant to depleted oxygen levels, either migrate to more oxy- 

enated waters or experience declining in population ( Fernández 

lamo and Färber Lorda, 2006 ; Gilly et al., 2013 ; Färber Lorda 

nd Färber Data, 2023 ; Parouffe et al., 2023 ). This physiological 

tress caused by hypoxia leads to metabolic suppression in ma- 

ine organisms impacting their reproduction, growth and survival 

 Seibel, 2011 ; Tremblay and Abele, 2016 ). It has cascading ef- 
7

ects on the marine food cycle particularly in the regions of up- 

elling nutrient rich waters leading to reduction in fish stocks 

nd altered community structures ( Fernández Álamo and Färber 

orda, 2006 ; Tremblay and Abele, 2016 ; Färber Lorda and Färber 

ata, 2023 ). Schubotz et al. (2018) reported that the microbial ac- 

ivity in Arabian sea OMZ removes ∼30–50% of ocean’s fixed nitro- 

en. This nitrogen loss is intensified further through unique condi- 

ions present in OMZs where both aerobic and anaerobic processes 

oexist leading to complex interactions among microbial communi- 

ies ( Thamdrup et al., 2012 ; Beman and Carolan, 2013 ). In addition

o this, the coupling of nitrogen and sulfur cycles in OMZs suggests 

hat changes in one cycle can significantly affect the other cycle 

hereby controlling the larger ongoing biogeochemical processes in 

he ocean ( Al Azhar et al., 2014 ; Carolan et al., 2015 ). The pres-

nce of sulfur reducing bacteria in OMZ can affect the availabil- 

ty of nitrogen compounds, further complicating the biogeochem- 

cal landscape ( Fig. 5 ; Gazitúa et al., 2021 ). The low oxygen con-

itions in OMZs also influence the cycling of other elements, such 

s iron and phosphorus. These elements can accumulate in OMZs 

nd, depending on ocean circulation patterns, may be transported 

o other regions, influencing primary productivity in those areas 

 Scholz, 2018 ; Xing et al., 2025 ). 

The expansion of OMZs have significant implications for habi- 

at loss in marine ecosystem. As the oxygen level declines, marine 

pecies, particularly those that are less tolerant to hypoxic condi- 

ions, experience habitat loss and compression that leads to shift in 

ommunity composition and reduction in biodiversity ( Fernández 

lamo and Färber Lorda, 2006 ; Vaquer-Sunyer and Duarte, 2010 ; 

achkar et al., 2016 ; Färber Lorda and Färber Data, 2023 ). The di-

ect relationship between oxygen depletion and habitat loss is ev- 

dent in marine environments with high productivity and weak 

entilation such as Arabian sea and eastern tropical pacific in 

hich limited replenishment of oxygen leads to extensive OMZ for- 

ation that can displace or eliminate sensitive species ( Figs. 2 and 

 ; Lachkar et al., 2016 ; Färber Lorda and Färber Data, 2023 ). This

henomenon becomes more severe when marine organisms in- 

luding fish and invertebrates, have specific oxygen requirements 

or their sustenance and reproduction. As the overall biodiver- 

ity of the ocean’s declines, it may cause loss of ecosystem ser- 

ices when organisms are pushed out of their preferred habi- 

ats ( Vaquer-Sunyer and Duarte, 2010 ; Färber Lorda and Färber 

ata, 2023 ). The loss of biodiversity and habitat complexity fur- 

her diminishes the resilience of the marine ecosystems to addi- 

ional stressors such as climate change and pollution, further, am- 

lifying the effects of habitat degradation ( Breitburg et al., 2018 ). 

huiyan (2024) recently noted that the expansion of OMZs impacts 

he critical habitats such as coral reefs, seagrass beds and coastal 

cosystems which are already vulnerable to anthropogenic activi- 

ies. The deterioration of these habitats leads to significant damage 

n marine biodiversity due to dependency of many species on these 

nvironments for breeding, feeding, and shelter ( El-Naggar et al., 

022 ). 

Further, the expansion is also largely attributed to anthro- 

ogenic activities, particularly the climate change and nutrient 

oading from the agricultural runoff which intensify the natural 

rocesses leading to the deoxygenation ( Fig. 5 ). The ocean strat- 

fication, one of the primary causes of OMZ expansion, is ag- 

ravated by eutrophication phenomenon, especially in the semi- 

estricted basins like the Baltic Sea and Chesapeake Bay where nu- 

rient enrichment leads to the algal blooms followed by hypoxic 

onditions because of decomposition of the organic matter ( Fig. 5 ; 

eeling et al., 2010 ; Lowery et al., 2018 ). The interaction of these 

actors leads to substantial reduction in oxygen levels, especially 

n coastal upwelling regions which are key hotspots for OMZ for- 

ation ( Scholz, 2018 ). Oceanographic conditions such as upwelling 

nd circulation patterns also affects the geographical distribution 
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f OMZs. They cover a huge area in the Eastern Tropical Pacific 

nd the Arabian Sea where nutrient rich waters rise to the sur- 

ace to drive high primary productivity and therefore increase oxy- 

en use at depth ( Figs. 2 , 3 and 5 ; Bristow et al., 2016 ). How-

ver, these regions are especially sensitive to changes by humans 

nd these changes can amplify the spatial extent and intensity of 

MZs by additional nutrient inputs and changed circulation pat- 

erns ( Scholz, 2018 ). Gilly et al. (2013) reported that long term de-

reases in oxygen concentrations are evident throughout much of 

he ocean interior, especially in OMZs present in midwater and the 

xtents of which have substantially increased during the past 50 

ears. Keeling et al. (2010) stated that forecasting statistical mod- 

ls indicate that as climate change continues, oxygen inventories 

round the globe will continue to decline and that the area and 

olume of OMZs will increase. The complex interaction among var- 

ous factors characterizing these zones, makes it difficult to predict 

he precise impacts of climate change on OMZs and their down- 

tream consequences. Nevertheless, understanding of these inter- 

ctions is a prerequisite for the design of mitigation and adapta- 

ion strategies to protect marine ecosystems and the services they 

rovide. 

. Current scenario and way forward 

The expansion of OMZs, driven by a complex interaction of nat- 

ral and anthropogenic factors, has a severe implication for ma- 

ine ecosystems, global biogeochemical cycles and Earth’s climate 

ystem. Understanding the current scenario and defining a future 

ourse, there needs to be a multidimensional approach involving 

he participation of scientific research, government policies and 

ooperation at global level. Moreover, most of the OMZs are ex- 

anding in geographical extent and intensifying in their hypoxic 

onditions, exacerbating marine biodiversity and ecosystem health 

n comparison to their past extent and intensity. Expanding OMZ 

s driven significantly by climate change. Reduced oxygen solu- 

ility in ocean warming and increased stratification prevent re- 

lenishment of oxygen to deeper waters. In turn, climate change 

trengthens the positive feedback loop of OMZ expansion in which 

erturbed biogeochemical cycle can further amplify the climate 

hange. Consequently, OMZ expansion is driven in large part by 

nthropogenic nutrient loading, which in many cases, are caused 

y agricultural and wastewater feeding. The propagation of these 

utrients led to the algal bloom and their subsequent decomposi- 

ion utilize an enormous amount of oxygen, thus, depleting it in 

ffected regions of the ocean. 

The scientific research incorporating modern techniques is 

eeded to further increase our knowledge on OMZ dynamics, their 

ensitivity to climate change and human impacts and ecologi- 

al and biogeochemical consequences. It includes monitoring pro- 

rams, modeling studies and experimental investigations to un- 

avel the complex interplay of factors involved. As the climate 

hange is a major driver of OMZ expansion, addressing this global 

hallenge is paramount. Minimizing the nutrient run off from 

and-based sources is crucial to curb the excessive fertilization of 

oastal waters that contributes to OMZ formation. It involves im- 

lementing sustainable agricultural practices, improving wastewa- 

er treatment & management, and reducing industrial discharges. 

mplementation of marine protected areas and other conservation 

easures can help safeguard vulnerable ecosystems and species 

rom impacts of OMZ expansion. These steps include identifying 

nd protecting areas of high biodiversity and ecological impor- 

ance. As OMZs are a global phenomenon, international coopera- 

ion is essential for effective monitoring, research and management 

ffort s. Sharing of data, expertise and resources among nations 

nd their scientific bodies is crucial to address this transboundary 

hallenge. 
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